This page (revision-43) was last changed on 18-Apr-2021 19:03 by JianSun

This page was created on 24-Apr-2008 18:38 by JianSun

Only authorized users are allowed to rename pages.

Only authorized users are allowed to delete pages.

Page revision history

Version Date Modified Size Author Changes ... Change note
43 18-Apr-2021 19:03 5 KB JianSun to previous
42 02-May-2008 17:30 5 KB JianSun to previous | to last
41 01-May-2008 03:17 5 KB David R Williams to previous | to last

Page References

Incoming links Outgoing links

Version management

Difference between version and

At line 1 changed one line
The compression rate of onboard EIS data may vary depending on a few factors such as the observing target (QS, AR, CH, etc), slit/slot selection, exposures, etc.
[{ALLOW edit EISMainUsers}]
[{ALLOW view Anonymous}]
The __compression factor__ of on board EIS data may vary depending on a few factors such as the observing target (QS, AR, CH, etc), slit/slot selection, exposures, etc.
At line 3 changed one line
The purpose of this study is trying to discover how different compression schemes effect EIS data volume onboard and work out a better estimation of compression rate for compression scheme (eg. DPCM, JPEG98, JPEG95, etc.)
The purpose of this study is trying to investigate how different compression schemes effect EIS data volume on board (MDP) and work out a better estimation of compression factor for compression scheme (eg. DPCM, JPEG98, JPEG95, etc.)
At line 7 added one line
!The approach:
At line 9 added one line
1. to get actual data volume from MDP status information: the inclined curve means data packets from EIS on MDP increasing, the vertical curve means data packets dumped to ground station. So in general, knowing a raster's start and end time one can fitstly calculate actual data volume in that duration, and then compare it with the designed data volume in raster's definition, to get data compression factor.
At line 11 added one line
[{Image src='images/factor/dataVolume_eis.png}]
At line 8 changed one line
[{Image src='images/factor/75/JPEG75_only.gif'}]
2. to get related information from planning database/eis catalogue/fits header, for example: raster ID, compression scheme, designed data volume, SCI_OBJ, TARGET, slit/slot, exposures, etc.
At line 15 added one line
3. prepare plots based on various factor combinations: compression factor vs. slit/slot, factor vs. target, factor vs. exposures
At line 11 changed one line
QS QS,DC QS,SYN QS,CH QS,NET QS,DC,XBP QS,SYN,DC QS,DC,SEI QS,PCH
\\
At line 13 changed one line
XBP,QS
!!Some preliminary results (plots):
At line 15 changed one line
AR AR,LMB AR,EFR AR,PLG AR,CH AR,NFL AR,CH,LMB
\\
At line 17 removed one line
SYN SYN,DC SYN,QS,DC
At line 19 changed one line
PCH PCH,LMB,JET PCH,JET
''The investigation here is for date sets obtained mainly between %%(color:#cc0000;)2007-Sep-15 and 2007-Dec-15%%, as EIS operations were most efficient and stable over this duration. The other data sets inluded here are: %%(color:#cc0000;)2008-Mar%% (for JPEG85), %%(color:#cc0000;)2006-Dec%% (for JPEG75), %%(color:#cc0000;)2007-Jan to 2007-Apr%%, and %%(color:#cc0000;)2008-Feb%%.
''
At line 21 changed one line
JET,LMB,PCH
\\
At line 23 removed one line
LMB LMB,LO LMB,PCH,SPI LMB,SPI
At line 25 changed one line
ENG,LMB,JET,PCH ENG,QS,DC
* [DPCM Compression Scheme]
At line 27 removed one line
SYN,DC,QS SYN,DC
At line 29 changed one line
CH CH,JET CH,XBP CH,DC CH,LMB CH,QS CH,XBP,JET,EFR CH,BP,JET
* [JPEG98 Compression Scheme]
At line 31 removed one line
PR PR,LMB PP,PCH
At line 33 changed one line
SPI,LMB
* [JPEG95 Compression Scheme]
At line 35 removed one line
EFR SEI,EFR
At line 37 changed one line
DC DC,LMB WAV NET
* [JPEG90 Compression Scheme]
At line 39 removed one line
SPI SPI,CH
At line 41 changed one line
BP,CH,JET BP,JET
* [JPEG85 Compression Scheme]
At line 43 removed one line
FIL,PR FIL,QS
At line 45 added 91 lines
* [JPEG75 Compression Scheme]
\\
----
The __average values__ of compression factor for each scheme are listed in following %%(color:#c00;)Sortable Table%% (although only a single number can't show the compression factor varation over a large dataset).
%%sortable
|| Scheme || Total || QS || AR || CH || 1" || 2" || 40" || 266" || 10s || 15s || 20s || 30s || 60S
|DPCM |2.52|2.80|2.80|2.70|3.0|2.96|3.63|2.49|3.08|3.01|2.5|2.6|2.42
|DPCM | | | | | | | |QS|3.14|2.94|2.91|2.52|2.32
|DPCM | | | | | | | |AR|2.96|3.0|2.35|2.5|2.14
|DPCM | | | | | | | |CH| |3.05|2.52|2.88|2.47
|JPEG98|2.56|2.67|2.46|3.44|2.80|2.36|2.56| |3.21|2.54| |2.4|
|JPEG98| | | | | | | |QS|3.32|2.60| |2.43|
|JPEG98| | | | | | | |AR|3.17|2.42| |2.49|
|JPEG98| | | | | | | |CH|3.6| | | |
|JPEG95|6.25|6.12|6.38| |6.23|6.3| | |5.86| |4.60| |
|JPEG95| | | | | | | |AR|5.82| |4.08| |
|JPEG90|8.11|7.39|8.6|8.4|4.85| |5.04|8.34| | | |5.04|
|JPEG90| | | | | | | |QS| | | |3.87|
|JPEG90| | | | | | | |AR| | | |3.81|
|JPEG85|5.56|5.58|4.92|6.21| | |5.56| | | | | |
|JPEG75|11.39| | | | | | |11.39|11.39| | | |
%%
However, the number shown above has difference from previous work done by others, eg, Hara'san result:
{{{
> 40" SLOT
> DPCM 2.36
> JPEG98 2.70
> JPEG95 3.47
> JPEG92 4.22
> JPEG90 4.63
> JPEG85 5.74
> JPEG75 7.63
> JPEG65 9.43
> JPEG50 12.0
> For 10s exposure time. }}}
\\
This work is just a start, the method and results shown here need to check again, and compare with other numbers. !As I mentioned above, these are only preliminary results on EIS compression factor. Still there are more need to be done, so any contributions, comments and suggestions are very helpful!\\
----
%%information
As for target selection, in this case, I uses value of %%(color:#cc0000;)SCI_OBJ%% keyword instead of %%(color:#cc0000;)TARGET%% keyword as the later is only meaningful at (study/raster) design stage, the actual target is chosen during the EIS planning.
However, sometimes there is no value for SCI_OBJ in EIS fits header, and sometimes there are two many values (see [SCI_OBJ_Example]). Lots of EIS dataset are thrwon away as hardly to decide to which catagroy the SCI_OBJ belongs to, such as QS,AR or CH.
%%
%%information
Compensation has been applied for those paused (and aborted) rasters. This is implemented by comparing %%(color:#cc0000;)NEXP%% and %%(color:#cc0000;)RAST_REQ%% and timing the ratio of two values.
%%
%%information
There is a structure array to store all related information for the EIS data investigated here. The array has element with the following format:
{{{
compFactor={compression_factor, $
study_ACR :'', $ ;string
study_id :'', $ ;string
rast_ACR :'', $ ;string
rast_id :'', $ ;string
ll_ACR :'',$ ;string
ll_id :'',$ ;string
start_time :'', $ ;string
end_time :'', $ ;string
fitsname :'',$ ;string
target :'',$ ;string
sci_obj :'',$ ;string
slit :'',$ ;string
def_volume :0LL,$ ;long64 int, unit: bits
mdp_volume :0.0,$ ;float, unit: kbits
comp_scheme :0,$ ;int
nexp :0,$ ;int
rast_req :0,$ ;int
exposures :fltarr(8) $ ;float, unit: sec
}
}}}
I attached an IDL sav file [here|https://vsolar.mssl.ucl.ac.uk/eiswiki/images/newgifs/20071201_20071215.sav.tar.gz]. You may download and play it, for example, I use:
{{{if (str1[i].SCI_OBJ eq 'QS') && (str1[i].COMP_SCHEME eq 1) && (str1[i].MDP_VOLUME gt 0.) then ind[i]=1}}}
to extract records associated with 'QS' SCI_OBJ and using DPCM compression scheme.
----