The conventions of title: HEADERyymmdd-Index => brief study descriptions, e.g.: ar100417-13 => Nanoflare heating of coronal loops
HEADER: qs (Quite Sun); ar (Active Region); hop (Hinode Operation Plan); test (Test studies)
Available EIS Core Team Studies#
Quiet Sun
#
qs091216-01 => Evolution of X-ray bright point#
– Kamio (kamio@linmpi.mpg.de)
-- point to a quiet region with an X-ray bright point near disk centre
-- run IUU_SLOT_136x400_Q65 (ID # 292) for context
-- data volume: 12.1 Mbit; duration: 15m 41s
-- run SK_QS_34x168c (ID # 295) for BP study; data volume: 2.1 Mbit; dur: 3m 49s
-- run for 3 hours or longer
-- SOT: support with magnetograms (3 min cadence) and Ca II H filtergrams to track evolution of magnetic fields in the photosphere
qs091216-02 => Coronal/TR Doppler & photosphere transverse magnetic features and cancellation events#
– Yokoyama (yokoyama.t@eps.s.u-tokyo.ac.jp)
-- QS near the disk centre, if possible, include an XBP in FOV for alignment
-- observation structure similar to the Muglach programme
-- run studies in the order: three times (a) - n times (b) - three times (a)
-- a) Study: quiet_sun_slot (#210); 40x512 slot image as context; volume: 1.4Mbits,
-- duration: 1.5min, rate:16.4kbps
-- three images should be taken before and after program b)
-- b) Study: sta_loop_context_lo (#278); vol: 23.3Mbits, dur: 34min, rate: 34kbps
-- repeat n times to fit into available data volume
-- EXPOSURE: 30s, RASTER: 60 steps, SLIT: 2", STEP: 2" FOV: 120"x248"
-- SOT support: FG/NFI: NaI/IV 2-wavelength filter (mandatory)
-- 1st priority on the high cadence (at least < 60sec).
-- 2nd priority on the longer coverage (>2-3hrs continuous coverage;
-- Interuptions by SAAs and S/C nights are OK.)
-- 3rd priority on the FOV (at least, larger than 100arcsec^2)
-- SP: fast mapping, FOV: same as FG/NFI (mandatory)
-- FG/BFI: CaII/G-band (lowest priority, can be omitted)
-- XRT support: FOV: cover the same FOV as SOT Filters: low-temperature filter-pair; Cadence: <5min
qs091216-03 => QS Brightenings#
– Bewsher (d.bewsher@rl.ac.uk), Young
-- EIS to point at quiet Sun region near disk centre
-- run following studies:
-- PRY_slot_context_v3 (dur: 3min; vol: 3 Mbit) once at start of observation
-- tr_bright_lo (dur: 6min; vol: 1.5 Mbit) repeatedly to fill available time slot
-- PRY_slot_context_v3 again, once at end of observation
-- run tr_bright_lo for minimum of 4h; longer if possible
-- request SOT and XRT to observe EIS FoV: 20” x 144”
-- SOHO/CDS involvement desirable; advise schedule to Bewsher
qs091216-04 => Search for Evidence of Wave Activity in the Solar Corona#
– Bewsher (dbewsher@uclan.ac.uk), Harrison (richard.harrison@stfc.ac.uk)
-- run rah_line_narrow; duration: 1 h 5 m 20 s; data volume: 24 Mbits
-- run for 6 hour min (144Mbits); longer if possible; repeat to fill time slot
-- point to the off limb ‘quiet’ solar corona above the equator; solar y = 0; limb should be in the fov; planner should maximise the altitude observable
-- request SOT and XRT to observe EIS fov (238 x 256”)
-- CDS involvement essential, advise schedule to Bewsher – note email change
qs091216-05 => X-ray Bright Points Onset#
– Brown (dsbrown@uclan.ac.uk), Bewsher (dbewsher@uclan.ac.uk)
-- EIS to point at quiet Sun region near disk centre
-- target QS magnetic fragments as seen by SOT with little/no emission in the corona
-- run the following studies:
-- PRY_slot_context_v2 (dur 3 min; vol 3 Mbit) once at start of observation
-- dob_bp_slit_raster (dur 33m 50s; vol 7 Mbit) or dob_bp_slot_raster (dur 2m 13s; vol 7 Mbit); repeat to fill available time slot
-- PRY_slot_context_v2 at end of observations
-- run dob_bp_****_raster for minimum 4h; run both studies on different days
-- request SOT and XRT to observe EIS FoV: 120x160" (dob_bp_slit_raster) or 160x160" (dob_bp_slot_raster)
-- TRACE/CDS involvement desirable; advise schedule to Brown and Bewsher
qs091216-06 => Coronal Jets#
– Warren (hwarren@nrl.navy.mil), Ugarte-Urra
-- measure DEM in jet reconnection region
-- run slot_context_lite_v1 before/after IUU_SCAN_STEPS_002 in N- polar CH
-- place raster (slit: 368") so that part covers adjacent Quiet Sun
-- run for as long as possible outside of eclipse
qs091216-07 => Quiet Sun diagnostics/evolution#
– Ugarte-Urra (iugarte@ssd5.nrl.navy.mil)
-- point to a generic quiet Sun region (solar tracking). Two study sequences:
a) run NRL_QSCH_30X400_90s2 multiple times (3 at least)
b) run IUU_SLOT_488x512 as context
-- run HPW019AR_1x400_45s (sit-and-stare) for 2 hours
-- run IUU_SLOT_488X512 as context
-- Note: ideally run sequences one after the other on the same pointing.
-- sequences can run independently of each other if needed.
-- SOT magnetograms and XRT C_poly or Al_poly observations desirable, matching EIS cadence (1-2 min) in sequence b)
qs091216-08 => Coronal Hole Density Measurement#
– Young (peter.young.ctr.uk@nrl.navy.mil)
-- polar or equatorial CH
-- select pointing based on EIT 195 images; choose darkest part of CH
-- accurate warm pixel removal essential for CH data
-- run REGCAL071 and REGCAL072 on the same day; also context study
-- study sequence is: REGCAL071; REGCAL072; PRY_slot_context_v2 ;
-- PRY_CH_density
-- run on mid-latitude extension to N-polar CH
Note 1: repeat PRY_CH_density to fill time slot; vol: 20 Mbit; data rate: 5.2 kbps
Note 2: for large dark CH areas, stitch two or more repeats of PRY_CH_density
qs091216-09 => Eclipse Spectral Atlas#
– Young (pyoung@ssd5.nrl.navy.mil)
-- obtain reference spectra for general science during Hinode eclipse season
-- run PRY_slot_context_v3 (5 Mbits) and Eclipse_raster_v2 (99 Mbits)
-- observe any target
-- run PRY_slot_context_v3 once
-- follow by one run of Eclipse_raster_v2 (total duration: 54mins)
-- start PRY_slot_context_v3 10 mins after end of Hinode orbital night
-- repeat for consecutive day-time periods depending on available data volume
qs091216-10 => Properties in Solar Wind Source Regions#
– Warren (hwarren@nrl.navy.mil), Ko (yko@ssd5.nrl.navy.mil)
-- target: equatorial or low-latitude coronal hole within ± 40o latitude; Polar CH extensions also possible if within ± 40o; observe with CH at central meridian
-- run a) YKK_EqCH_02n around the centre of the coronal hole
-- run b) YKK_EqCH_02n between the centre and East CH boundary
-- run c) YKK_EqCH_02w at E CH boundary partly covering the 'visible' CH, partly covering adjacent AR or QS to the East
-- run context raster slot_context_q50 covering FOV of the a, b and c rasters
-- default pointing: Sun center X=0", Y=0"; slit field-of-view to cover the solar equator; if CH does not reach latitude zero cover lowest latitude reached
-- if all three studies not possible in time available, run b) followed by c)
-- contact Yuan-Kuen Ko (yko@ssd5.nrl.navy.mil) to agree final pointing
-- see Core HOP 146; use these original studies for on-disc CHs only
qs091216-11 => Quiet sun dynamics study#
– Muglach
-- run studies in the order: three times (a) - n times (b) – three times (a)
-- a) Study: quiet_sun_slot (#210); 40x512 slot image as context
-- three images should be taken before and after program b)
-- b) Study: KM-qs-study-low (#315)
-- run in areas of quiet Sun, also plage or moderately active regions possible
-- slit should at least be partially on the disk
-- avoid large, well developed ARs and coronal holes
-- study for small-scale short-term variation of QS structures in cool EIS lines.
-- repeat n times to fit into available data volume; at least for 30 min
-- EXPOSURE: 20s, RASTER: Scanning, 4 steps, SLIT: 2", STEP: 2", FOV: 10"x464"
-- if n = 30 for (b), data volume is 70 Mbits; run (b) for longer if volume available
Co-observing:
- SOT:
1) magnetograms in either Fe I or Na I, in 60s cadence (or less if telemetry allows).
SOT to run > 15 min before EIS start and at least 15 min after EIS end.
2) SP scans of the target regions valuable additions but lower priority than 1.
3) BFI images in G-Band can be added; lower priority than 1 and 2.
4) XRT: filtergrams in the thinnest filter(s)
qs091216-12 => Filament Evolution#
– Green (lmg@mssl.ucl.ac.uk)
-- Observe an on-disc filament
-- Run
-- cme_slot_red_lkh for approx 30 min; data vol: 18 Mbit; context
-- cme_slit_red_lkh to fill available time; 34 min has data vol: 31 Mbit
-- cme_slot_red_lkh for approx 30 min; data vol: 18 Mbit; context
-- Run if suitable quiescent filament is available on disc
qs091216-13 => Interchange Reconnection at CH Boundaries#
– Search for closed/open field interactions at CH boundaries with adjacent activity
– Baker (db2@mssl.ucl.ac.uk), Van Driel (lidia.vandriel@obspm.fr)
-- run dhb_polar_scan_Q90 (ID #294);
-- check with proposers for pointing details
-- run for small closed structures at CH boundaries or inside on-disc CHs
EIS HOP Obs.
#
hop-a => EIS CORE HOP 80:#
Polar Coronal Hole Observation – Gabriel (alan.gabriel@ias.u-psud.fr), Harra (lkh@mssl.ucl.ac.uk)
hop-b => EIS CORE HOP 130: #
Multi-temperature Full Disk Slot Scans - Ugarte-Urra (iugarte@ssd5.nrl.navy.mil), Brooks (dhbrooks@ssd5.nrl.navy.mil)
hop-c => EIS CORE HOP 146: #
Solar Wind Source Regions During Solar Minimum Conditions – Kuen Ko (yko@ssd5.nrl.navy.mil), Mariska (mariska@nrl.navy.mil)
hop-d => EIS CORE HOP 137: #
Evolution of Network Boundary Elements: Possible Connections to the Corona – Warren (hwarren@nrl.navy.mil)
Active Region, Flare, CME
#
Useful AR context studies for before/after main AR observation are: PRY_slot_context_v3 or PRY_slot_contextLITE
ar091216-01 => Active Region Studies#
– Warren (hwarren@nrl.navy.mil), Mariska
-- Studies HPW017AR_30x400_30s2, HPW018AR300x400_30s2 and
-- HPW019AR_1x400_45s2
-- select as appropriate for AR ToO
-- use PRY_slot_context_v3 or PRY_slot_contextLITE before/after selected HPW
-- check with Harry Warren re ASRC for raster expansion
ar091216-02 => AR dynamics and CME watch#
– Young, Ugarte-Urra
-- 40” slot for large FoV, high cadence AR images in a wide Te range to i) examine loop morphology ii) detect CME initiation.
-- run either i) PRY_slot_context_v3 (AR dynamics, includes diagnostics) or ii) PRY_slot_contextLITE (488”x488”; 3.5min); (CME watch, low TLM, extended hours)
-- repeat to fill available time slot; run for 3 hours, preferably longer
ar091216-03 => Active Region Studies#
– Warren (hwarren@nrl.navy.mil), Ugarte-Urra (iugarte@ssd5.nrl.navy.mil)
-- observe the large dispersing AR near CM
-- run a large raster with HPW018
-- run a fast scan with IUU_SCAN_STEPS_002 for several hours
ar091216-04 => Active Region Abundance Variations#
– Ko (yko@ssd5.nrl.navy.mil)
-- target: young AR of less than 3 days; search for any abundance evolution
-- FoV to cover centre of the AR
-- run study twice a day; separate runs by 12 hours; run for 7 consecutive days until AR west limb passage or decay - subject to TLM limitations
-- run YKK_ARabund01; raster scanning: 2” slit and 3” step; exposure: 45s; FOV: 194"x280; duration: 53 m 19s; Data: DCPM/64Mbit.
-- run PRY_slot_contextLITE for context after each raster
ar091216-05 => Pre-flare activity monitoring#
– Wallace (ajw2@mssl.ucl.ac.uk)
-- point to a flaring AR to search for features that precede flares
-- run Flare0_slit_AJW; (dur: 50m 34s; vol: 2.9 Mbits; size: 180” x 320”)
-- scanning raster; slit: 2”; step:2”; exposure: 30s; 89 steps.
-- run repeatedly on a flaring AR to fill available time allocation.
ar091216-06 => Search for Active Region outflows#
– Culhane (jlc@mssl.ucl.ac.uk), Harra (lkh@mssl.ucl.ac.uk)
-- observe AR outflows at opposite boundaries of the large dispersing AR near CM
-- run HPW015_DETAILED_MAP_1_45s_200x360 twice; two separate pointings
-- total data volume: 662 Mbits; duration: 2 x 2h 44 m or 5h 28 m total
-- check pointing positions with proposers
ar091216-07 => AR Temperature Diagnostic#
– Mason (hm11@damtp.cam.ac.uk)
-- run cam_ar_limb_lite_v2
-- target: temperature structure of active regions on the limb
-- centre raster at the active region core.
-- exposure time: 30s; raster: scanning; slit: 2"; step Size: 2", FOV: 360"X400";
-- raster duration: 1h40m46s
ar091216-08 => High cadence observations of AR transient brightenings and microflares#
– Mason (hm11@damtp.cam.ac.uk)
-- run cam_artb_lite_v2
-- run on AR to study transient brightenings and microflares at very high cadence
-- raster centre should be at polarity inversion line.
-- raster: scanning; slit: 2", step size: 2"; FOV: 40"X120"
-- raster duration: 4m32 seconds
-- run as many times as possible and at least for 3-4 hours continuous
ar091216-09 => CME onsets#
– Bewsher (danielle.bewsher@stfc.ac.uk), Harrison
-- algorithm to detect CME-related dimming
-- point above limb at AR if it develops with part of limb in FoV
-- if AR present, centre raster y-direction on the AR; null evaluation in AR absence
-- run cmeo_slit_lo; minimum 5 rasters; Duration: 4.2 h; Volume: 13 Mbit or
-- run cmeo_slot_lo; min duration: 5 h; Volume: 10 Mbit
-- algorithm uses difference imaging so minimum durations must be available
ar091216-10 => CORE EIS Flare Study 1#
– Milligan (ryan.o.milligan@nasa.gov)
-- run FLR001_flare_study;
-- exposure: 5s; raster: scanning; slit: 2”; step: 2”; FoV: 80” x 120”; raster time: 5m
-- run for as long as possible with available TLM; data volume: 37 Mbit/hr
-- target: any AR with significant flare probability
-- see http://www.mssl.ucl.ac.uk/www_solar/eisflarestudy.html for further details
ar091229-11 => CORE EIS Flare Study 2#
– Hara (hara@solar.mtk.nao.ac.jp)
-- study used to search for flow structures in flares
-- run HH_Flare_180x160_v2 (ID # 390)
-- exposure: 8s; raster: scanning, sparse; slit: 2”; step: 5”; FoV: 180” x 160”; raster time: 6m 36s, data volume: 4.7 Mbit
-- with compression (JPEG85) study should run at 757 Mbit in 16h 30m
-- see http://www.mssl.ucl.ac.uk/www_solar/eisflarestudy.html for further details
ar100329-12 => Full CCD Scans of ARs for Increasing Spectral#
Information – Young (pyoung@ssd5.nrl.navy.mil)
-- study to run nominally once per week subject to pressure from other requests
-- run on any available AR following check with proposer
-- run context study, PRY_slot_context_v3
-- run eclipse_raster_v2; ID: 362; data volume: 100 Mbit
ar100417-13 => Nanoflare heating of coronal loops#
Information – Klimchuk (james.a.klimchuk@masa.gov), Patsourakos (spatsurakos@gmail.com), Young (pyoung@ssd5.nrl.navy.mil)
-- test theory that coronal loops are bundles of unresolved, impulsively-heated strands by searching for spectral signatures in the wings of hot (5MK) emission lines
-- run PRY_slot_context_v3 (4.9 Mbits, 3min 29s), nanoflare_sas_v1 (82.5 Mbits, 31min 24s)
-- run sequence: PRY_slot_context_v3, then nanoflare_sas_v1, finally PRY_slot_context_v3
-- run nanoflare_sas_v1 multiple times with raster repeats to fill available time
-- AR pointing for nanoflare_sas_v1 to be at lower legs of loops
-- select inner part of AR; not perimeter “fan” loops
-- choose side of AR with legs oriented along line-of-sight to maximize Doppler shift due to field-aligned flows
-- prefer ARs near disk center
-- for wavelength calibration, position hot loops towards either bottom or top of slit; ensure that the opposite side of the slit observes a quiet Sun region.
NOTE: for pointing confirmation, please send screen grab from eis_image_tool to all three study authors showing suggested pointing. See http://tiny.cc/43rcc for typical pointing examples
Test and Calibration Studies
#
test-01 => EIS slit calibration#
– Young (pyoung@ssd5.nrl.navy.mil)
-- Obtain co-spatial data in the 1", 2" and 40" slits for various calibration tests (slit widths, tilt, intensity calibration)
-- run CALIB_slit_slot_v2 (ID # 389)
-- study includes three separate rasters; each must be individually pointed
-- point off-limb above the quiet Sun at the equator (either limb)
-- make two separate adjacent entries of calib_slit_slot_v2 on the timeline
-- select Solar-X position 50-60” above limb; same for each of the rasters in both study entries
-- select Y position with the YIP input rather than the solar-Y position
-- set the YIP entry to 511 for each of the three rasters in first study entry
-- for the second study entry, set YIP to 1 for each of the three rasters
-- data volume: 35 Mbits
-- duration: 56m.
test-02 => EIS velocity calibration#
– Kamio (kamio@linmpi.mpg.de)
-- Determine the slit tilt and curvature in full Y height for velocity calibration
-- execute raster scans at three positions with 1" and 2" slits
-- run ID 375 SK_DEEP_5x512_SLIT1 - the 1" slit study, with Y initial positions
#1 YIP=1; #2 YIP=256; #3 YIP=512
-- run ID 376 SK_DEEP_10x512_SLIT2 - the 2" slit study, with Y initial positions
#4 YIP=1; #5 YIP=256; #6 YIP=512
-- six consecutive rasters require total time 60min and data volume 45Mbits
-- target: quiet region near disk center (0", 0"); shift EIS FOV ±200" in E-W direction to avoid ARs; do not run if ARs in target area;
-- keep the same mirror initial position (MIP) for all rasters.